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One possible way to obtain the quasicrystallographic structure is the projection

of the higher-dimensional lattice into two- or three-dimensional subspaces. Here

a general technique applicable to any higher-dimensional lattice is introduced.

The Coxeter number and the integers of the Coxeter exponents of a Coxeter–

Weyl group play a crucial role in determining the plane onto which the lattice is

to be projected. The quasicrystal structures display the dihedral symmetry of

order twice that of the Coxeter number. The eigenvectors and the corresponding

eigenvalues of the Cartan matrix are used to determine the set of orthonormal

vectors in n-dimensional Euclidean space which lead to suitable choices for the

projection subspaces. The maximal dihedral subgroup of the Coxeter–Weyl

group is identified to determine the symmetry of the quasicrystal structure.

Examples are given for 12-fold symmetric quasicrystal structures obtained by

projecting the higher-dimensional lattices determined by the affine Coxeter–

Weyl groups Wa(F4), Wa(B6) and Wa(E6). These groups share the same Coxeter

number h = 12 with different Coxeter exponents. The dihedral subgroup D12 of

the Coxeter groups can be obtained by defining two generators R1 and R2 as the

products of generators of the Coxeter–Weyl groups. The reflection generators R1

and R2 operate in the Coxeter planes where the Coxeter element R1R2 of the

Coxeter–Weyl group represents the rotation of order 12. The canonical (strip,

equivalently, cut-and-project technique) projections of the lattices determine

the nature of the quasicrystallographic structures with 12-fold symmetry as well

as the crystallographic structures with fourfold and sixfold symmetry. It is noted

that the quasicrystal structures obtained from the lattices Wa(F4) and Wa(B6) are

compatible with some experimental results.

1. Introduction

To describe the symmetry of a natural phenomenon, group

theory plays a fundamental role. In this paper, we will explore

the quasicrystal structures obtained by projections of the

lattices described by the Coxeter–Weyl groups. Applications

of the Lie groups based on the Coxeter–Weyl groups are

well known in high-energy physics. The standard model of

the high-energy physics is based on the Lie group

SUð3Þ � SUð2Þ � Uð1Þ (Weinberg, 1967; Salam, 1968; Fritzsch

et al., 1973) and its extension to the Grand Unified Theories

SU(5) (Georgi & Glashow, 1974), SO(10) (Fritzsch &

Minkowski, 1975) and E6 (Gürsey et al., 1976) are intimately

related to their Coxeter–Weyl groups, which are the point

groups of the higher-dimensional lattices described by the

affine extensions. We wonder whether the Coxeter–Weyl

groups WðA4Þ, WðD5Þ and WðE6Þ of these Lie groups play any

special role in the study of quasicrystallography. Any Coxeter–

Weyl group with Coxeter number h has a maximal dihedral

subgroup of order 2h which acts faithfully in the Coxeter

plane. The lattices described by the point groups WðA4Þ

(Baake, Joseph et al., 1990; Baake, Kramer et al., 1990; Koca et

al., 2014) and WðB5Þ (de Brujin, 1981; Senechal, 1995) have

been already proposed for the description of quasicrystallo-

graphy with fivefold symmetries which result as the projec-

tions onto the respective Coxeter planes. The lattice described

by the affine group WaðB5Þ is the simple cubic lattice in five

dimensions and may describe tenfold symmetric quasicrys-

tallography when projected onto a Coxeter plane. On the

other hand, the lattices generated by the affine extension of

the Coxeter–Weyl group WðC5Þ, which has the same structure

as the point group WðB5Þ, are the root and weight lattices of

the group WaðD5Þ. Note the isomorphism between the auto-

morphism group of D5 and the group WðC5Þ, Aut(D5) �

W(D5):C2�W(C5). This proves that the lattice Wa(D5) can be

used to describe both fivefold and tenfold symmetric quasi-

crystallography. It was also observed that the quasicrystallo-

graphic structures in three dimensions with icosahedral

symmetry can be described by canonical projections of the six-

dimensional lattices determined by the affine extension of the
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Coxeter–Weyl group WðD6Þ which embeds the noncrystallo-

graphic group WðH3Þ as a maximal subgroup (Kramer & Neri,

1984; Bak, 1986; Conway & Knowles, 1986; Shcherbak, 1988;

Koca et al., 2001). We have recently proposed (Koca, Koca &

Al-Ajmi, 2012) that any quasicrystallographic structure with

h-fold symmetry can be determined by projections of the

higher-dimensional lattices onto the relevant Coxeter planes.

After the discovery of the icosahedral quasicrystal by

Shechtman et al. (1984), the recent developments indicate that

one can compose metallic alloys or other chemical composi-

tions which exhibit fivefold, eightfold, tenfold, 12-fold and 18-

fold symmetries. For a general explanation, see the references

on quasicrystallography (Di Vincenzo & Steinhardt, 1991;

Janot, 2012; Suck et al., 2002). A recent report on quasicrys-

tallography predicts the existence of a structure of 36-fold

symmetry (Lubin et al., 2012). It seems there is no a priori

limitation on the order of the dihedral group which may

describe the symmetry of the quasicrystal structures. This

suggests looking at the classifications of the Coxeter–Weyl

groups with different Coxeter numbers.

The Coxeter–Weyl groups are naturally characterized by

some integers known as Coxeter exponents (Coxeter, 1952;

Coxeter & Moser, 1965; Coxeter, 1973) and, in particular, each

Coxeter–Weyl group has a Coxeter number h which can be

used to describe the dihedral subgroup Dh of order 2h. It is

then quite natural to ask the question of whether the projec-

tions of the higher-dimensional lattices determined by the

affine Coxeter–Weyl groups with Coxeter number h can

describe quasicrystallography with h-fold symmetry. After

introducing a general framework, we study the projections of

the lattices described by the affine extensions of the Coxeter–

Weyl groups WaðF4Þ, WaðB6Þ and WaðE6Þ whose Coxeter

numbers are all given by h = 12. The last two groups describe

three different lattices in six-dimensional Euclidean spaces

and the first one defines a unique four-dimensional lattice

whose unit cell is the 24-cell. The Coxeter numbers of the

Coxeter–Weyl groups WðD7Þ and WðA11Þ are also equal to 12

but their lattice projections will not be included in this work.

There is yet another approach for the descriptions of the

quasicrystal structures. This is a set theoretic approach initi-

ated by Yves Meyer (Meyer, 1972, 1995) and later developed

by Robert V. Moody (Moody, 1995, 2000) in the name of a

model set. A set � is a Meyer set if it is a Delaunay (Delon) set

(Delaunay, 1932) and there exists a finite set F such that

��� � �þ F, or equivalently, ��� is uniformly discrete

(Moody, 2000). J. C. Lagarias (Lagarias, 1996) proved that

the Meyer set is also a quasiperiodic set. In the context of the

model set, the cut-and-project techniques in the series of

E8 ) H4;D6 ) H3;A4 ) H2 are worth mentioning (Chen et

al., 1998), in which the icosian ring plays an important role.

We organize the paper as follows. In x2, we study the

general technique for the canonical projections of the lattices

determined by the simply laced Coxeter–Weyl groups WðAnÞ,

WðDnÞ, WðE6Þ, WðE7Þ and WðE8Þ. The eigenvalues, eigen-

vectors and the simple roots of the Cartan matrix (Gram

matrix) of the Coxeter–Weyl group are used for the deter-

mination of the Coxeter planes and their maximal dihedral

subgroup. In x3, we study the canonical projection of the

exceptional lattice described by the affine Coxeter–Weyl

group WaðF4Þ. We project the fundamental polytopes of the

group WðF4Þ onto the Coxeter plane and, in particular, point

out the importance of the polytope which describes the

Voronoi cell. We use the method of canonical projection

(Duneau & Katz, 1985; Senechal, 1995) to obtain a 12-fold

symmetric quasicrystal from the projection of the WðF4Þ

lattice. It turns out that the quasicrystal structure obtained

from WðF4Þ is compatible with an experimental observation

(Ishimasa et al., 1985). x4 involves a general discussion of the

lattice Z6 described by the group WaðB6Þ and the projections

of its fundamental polytopes as well as the canonical projec-

tion of its six-dimensional cubic lattice onto the Coxeter plane.

The quasicrystal structure obtained by projection agrees with

the experimental result published recently (Förster et al.,

2013). In x5, we apply a technique similar to that developed in

x2 to the root and weight lattices described by the group

WaðE6Þ. x6 is devoted for the discussions of the relevant

techniques and further extensions of the work.

2. Decomposition of the lattice spaces into orthogonal
planes and the canonical projection

Let G be the Coxeter–Dynkin diagram (Coxeter, 1973)

representing the Coxeter–Weyl group of rank n which is

described by the simple roots �i, where i = 1, 2, . . . ; n. In this

section, we will only consider the simply laced root systems

with the norm fixed by ð�i; �iÞ ¼ 2. The Cartan matrix repre-

senting non-orthogonality of the simple roots is defined by the

scalar product

Cij ¼ 2ð�i; �jÞ=ð�j; �jÞ: ð1Þ

It is a real and symmetric matrix for the simply laced root

systems and also called the Gram matrix by crystallographers.

The weight vectors !i are defined by the relation ð!i; �jÞ ¼ �ij,

where �ij is the Kronecker delta. Weight vectors and the roots

are related to each other by the relations

�i ¼
P

j

Cij!j; !i ¼
P

j

ðC�1Þij�j: ð2Þ

The root lattice G and the weight lattice G� are defined by the

vectors p ¼
Pn

i¼1 bi�i, bi 2 Z and q ¼
Pn

i¼1 ai!i, ai 2 Z,

respectively. A standard notation for the weight vector is

q � ða1; a2; . . . ; anÞ with ai 2 Z. Let ri (i = 1, 2, . . . ; n) be the

reflection generator with respect to the hyperplane orthogonal

to the simple root �i. We will consider the highest weight

vector ða1; a2; . . . ; anÞ with ai � 0, which designates the

irreducible representation of a Lie group associated with

the Coxeter–Weyl group (Slansky, 1981). Denote by

WðGÞ ¼ hr1; r2; . . . ; rn ðrirjÞ
mij ¼ 1

�� i the Coxeter–Weyl group

generated by the reflections. The affine extension of the

Coxeter–Weyl group WaðGÞ can be generated by adjoining a

generator r0 which represents the reflection with respect to the

hyperplane bisecting the highest root which can be deter-

mined from the extended Coxeter–Dynkin diagram of the Lie

group. We use the notation WðGÞt � tG for the orbit generated
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from the highest weight vector t by the Coxeter group WðGÞ.

The set of vectors tG ¼ ða1; a2; . . . ; anÞG describes the vertices

of a polytope and should not be confused with the vector

ða1; a2; . . . ; anÞ, with ai � 0 used for the designation of the

irreducible representation of the associated Lie algebra. We

assume that the set of simple roots can be decomposed into

two sets in such a way that the corresponding reflection

generators r1; r2; . . . ; rk commute pairwise as well as do the set

rkþ1; rkþ2; . . . ; rn for some k< n. Define the generators R1 and

R2 by R1 ¼ r1; r2; . . . ; rk and R2 ¼ rkþ1; rkþ2; . . . ; rn (Carter,

1972; Humphreys, 1990). It is easy to show that the generators

R1 and R2 act as reflections on the simple roots of the Coxeter

diagram I2ðhÞ. The Coxeter element R1R2 represents a rota-

tion of order h in the plane spanned by the simple roots of the

graph I2ðhÞ. The integers mi of the Coxeter exponents mi�=h

(i = 1, 2, . . ., n) (Carter, 1972; Humphreys, 1990) listed in Table

1 are important for the determinations of the orthogonal

planes in which the Coxeter element acts as a rotation. The

eigenvalues of the Cartan matrix can be written simply as

2f1� cos½mið�=hÞ
g. The Dn series with even n has two

degenerate eigenvalues corresponding to the eigenvalue 2.

The Cartan matrix of the Coxeter–Weyl group of rank odd n

has an eigenvalue 2. The lattice of even dimension n described

by the affine Coxeter group of rank n can be decomposed into

orthogonal planes determined by the pair of orthogonal unit

vectors obtained from the eigenvectors of the Cartan matrix

corresponding to the eigenvalues 2f1� cos½mið�=hÞ
g and

2f1� cos½ðh�miÞð�=hÞ
g.

However, in the case of odd n, the eigenvector corre-

sponding to the eigenvalue 2 may be singled out. Let �i, where

i = 1, 2, . . . ; n, be the eigenvalue and the Xi is the corre-

sponding normalized eigenvector satisfying the eigenvalue

equation X
j

CijXjk ¼ �kXik: ð3Þ

Since the Cartan matrix of a simply laced Coxeter–Weyl group

is real and symmetric it follows that the eigenvalues are real

and the corresponding eigenvectors are orthogonal. However,

care should be taken for the Coxeter–Weyl group Dn for even

n because the eigenvalue 2 is doubly degenerate. The above

equation then can be written as

ðXTCXÞij ¼ �i�ij: ð4Þ

This will be used for the simply laced group WðE6Þ. One can

define the orthogonal set of unit vectors x̂xi by the relation

x̂xi ¼
1ffiffiffiffi
�i

p
P

j

�jXji: ð5Þ

It is straightforward to prove that the vectors in equation (5)

form an orthonormal set spanning an n-dimensional Eucli-

dean space. A general proof can be obtained for all Coxeter

groups by simple modification of the proofs given by Steinberg

(1951) and Carter (1972). Consequently, a similar relation for

the non-simply laced groups can be obtained where

x̂xi ¼ h�1=2��1=2
i

P
j Xji½ð2�jÞ=ð�j; �jÞ
. Here the eigenvectors

are such that the last components are all equal to 1.

Let us further elaborate the properties of the planes in

which the dihedral group Dh (it is unfortunate that the

same letter is also used for the Coxeter–Weyl group) or some

of its subgroups. We have already stated that the dihedral

group acts in the plane determined by the unit vectors

corresponding to the eigenvalues 2f1� cos½mið�=hÞ
g and

2½1� cosðh�miÞð�=hÞ
. For odd n one of the integers takes

the value mi = h/2 so that the corresponding eigenvalue is 2.

The corresponding unit vector to this eigenvalue is unpaired

with any other unit vector. Therefore it will be orthogonal to

the rest of the planes determined by the other unit vectors. If

we choose m1 ¼ 1 and mn ¼ h� 1 (in the case of the Coxeter–

Weyl group Dn this reads m1 ¼ 1 and mn�1 ¼ h� 1) then the

corresponding eigenvalues will be 2½1� cosð�=hÞ
. Let us

denote the corresponding unit vectors by x̂x1 and x̂xn (x̂xn�1 for

Dn). Then one can show that the root vectors

�1 ¼21=2
½sin �=2hð Þx̂x1 þ cos �=2hð Þx̂xn
;

�n ¼21=2½sin �=2hð Þx̂x1 � cos �=2hð Þx̂xn

ð6Þ

determine the Coxeter plane and the simple roots of the

Coxeter graph I2ðhÞ satisfy the Cartan matrix

2 �2 cosð�=hÞ

�2 cosð�=hÞ 2

� �
: ð7Þ

It is easy to prove that the generators R1 and R2 act as

reflections on the simple roots �1 and �n, respectively.

Consequently, the Coxeter element R1R2 acts as a rotation by

2�/h in the Coxeter plane determined by the vectors �1 and �n.

All orthogonal planes can be compactly defined by the pair of

simple roots �i; �nþ1�i with

�i ¼21=2 sin mi�=2hð Þx̂xi þ cos mi�=2hð Þx̂xnþ1�i

� �
;

�nþ1�i ¼21=2 sin mi�=2hð Þx̂xi � cos mi�=2hð Þx̂xnþ1�i

� �
;
ð8Þ

ði ¼ 1; 2; . . . ; n=2Þ for even n. Therefore each pair of simple

roots �i; �nþ1�i determines a Coxeter graph I2ðh=miÞ where

the Coxeter element acts as a rotation by the angle mið2�=hÞ.

The scalar product ð�i; �nþ1�iÞ ¼ �2 cos½ðmi�Þ=h
 implies that

the lattice space is decomposed into an orthogonal set of

planes each of which is associated with a pair of Coxeter

exponents satisfying mi þmnþ1�i ¼ h. Similar decomposition

of the lattice space into orthogonal set of planes was studied
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Table 1
Integers of the Coxeter exponents and the Coxeter number.

m1;m2; . . . ;mn h

An 1; 2; . . . ; n nþ 1
Bn 1; 3; 5; . . . ; 2n� 1 2n
Cn 1; 3; 5; . . . ; 2n� 1 2n
Dn 1; 3; 5; . . . ; 2n� 3; n� 1 2ðn� 1Þ
E6 1; 4; 5; 7; 8; 11 12
E7 1; 5; 7; 9; 11; 13; 17 18
E8 1; 7; 11; 13; 17; 19; 23; 29 30
G2 1; 5 6
F4 1; 5; 7; 11 12
H3 1; 5; 9 10
H4 1; 11; 19; 29 30
I2ðhÞ 1; h� 1 h



by Barache et al. (1998). Their main concern was the Pisot-

cyclotomic numbers which are used to determine the planes

[�i, �nþ1�i (ui; vi) are their notation for the planes] and did not

refer to the Coxeter exponents derived from the eigenvalues

of the Cartan matrix and the eigenvectors used to define the

set of orthogonal vectors given in equation (5). The Cartan

matrix of an arbitrary Coxeter–Weyl group can be trans-

formed into a block-diagonal matrix where each entry is

represented by a 2� 2 matrix similar to (7) for the even n

otherwise it includes a 1� 1 matrix with entry 2. Similarly, the

Coxeter element can be represented by a block-diagonal

matrix

R1R2 ¼

M1 0 0 0 0 0

0 M2 0 0 0 0

0 0 : 0 0 0

0 0 0 : 0 0

0 0 0 0 : 0

0 0 0 0 0 Ms

0
BBBBBB@

1
CCCCCCA
; ð9Þ

where each Ms, acting on the set of orthogonal unit vectors x̂xi,

is either 1;�1 or a 2� 2 matrix of the form (Engel, 1986;

Senechal, 1995)�
cos mið2�=hÞ
� �

� sin mið2�=hÞ
� �

sin mið2�=hÞ
� �

cos mið2�=hÞ
� � �: ð10Þ

The planes determined by matrix (10) are called the principal

planes (Engel, 1986). The characteristic equation of the

Coxeter element is the product of the characteristic equations

obtained from matrix (10). A similar result was obtained

from a different approach in section 5.3 of the article by

Engel (1986) for an arbitrary lattice. Components of the root

and weight vectors p =
Pn

i¼1 bi�i and q =
Pn

i¼1 ai!i �

ða1; a2; . . . ; anÞ in the orthonormal basis can be easily deter-

mined by using equation (5) as

pi ¼
ffiffiffiffi
�i

p Xn

j¼1

bjXji; qi ¼
1ffiffiffiffi
�i

p
Xn

j¼1

ajXji; ai; bi 2 Z: ð11Þ

The pair of components ðpi; pnþ1�iÞ and ðqi; qnþ1�iÞ in the

plane determined by the root and weight vectors represent

respectively the orthogonal projections of the respective

lattices. The projection technique given in (11) has not been

discussed in this context elsewhere. An n-dimensional Eucli-

dean space can be decomposed as the space E|| determined by

the pair of unit vectors x̂x1 and x̂xn and the complement is the

orthogonal space E?. The canonical projection can be defined

as follows. Pick up the set of vectors Vð0Þ (MacKay, 1982;

Katz, 1988, 1989) that represents the Voronoi cell of the root

(Conway & Sloane, 1982, 1988; Moody & Patera, 1992) or

weight lattices (Conway & Sloane, 1988) around the origin.

Projection of the Voronoi cell into the space E? determines a

ball whose surface is a sphere Sn�3 of radius R0 which is also

called window K (Senechal, 1995). Then one projects the

lattice points into the ball determined by the radius R0. Then

project those lattice points which are restricted by the sphere

of radius R0 onto the plane determined by the unit vectors

x̂x1 and x̂xn. This is a general technique for every higher-

dimensional lattice determined by the affine Coxeter groups.

In the following sections, we apply this technique for the

projections of the lattices determined by the Coxeter–Weyl

groups WaðF4Þ, WaðB6Þ and WaðE6Þ.

A few words are in order for the Voronoi cells of the

lattices. The Voronoi regions of the root lattices are discussed

in detail by Moody & Patera (1992) and can be easily

summarized in our notations as follows. The Voronoi cell

Vð0Þ of An is a polytope dual to the root polytope

ð1; 0; 0; . . . ; 0; 1ÞAn
and can be written as the union of the

orbits ð1; 0; 0; . . . ; 0; 0ÞAn
[ ð0; 1; 0; . . . ; 0; 0ÞAn

[ . . . [
ð0; 0; 0; . . . ; 0; 1ÞAn

. For instance the Voronoi cell of the f.c.c.

lattice of A3 (the root lattice) is a Catalan solid, the rhombic

dodecahedron, described by the union of the polytopes

ð1; 0; 0ÞA3
[ ð0; 1; 0ÞA3

[ ð0; 0; 1ÞA3
dual to the root polytope

ð1; 0; 1ÞA3
(Koca et al., 2010). Similarly the Voronoi cell of A4 is

the union of the polytopes ð1; 0; 0; 0ÞA4
[ ð0; 1; 0; 0ÞA4

[

ð0; 0; 1; 0ÞA4
[ ð0; 0; 0; 1ÞA4

dual to the root polytope

ð1; 0; 0; 1ÞA4
(Koca, Koca & Al-Ajmi, 2012). One can check

that for all simply laced Coxeter–Weyl groups the Voronoi

cell of the root lattice is the dual polytope of the root

polytope. The Voronoi cells of the weight lattices studied by

Conway & Sloane (1988) can be expressed in terms of our

notation. The Voronoi cell Vð0Þ of the weight lattice An
�

(Koca, Koca & Koc, 2012) can be represented by the polytope

1=ðnþ 1Þð1; 1; . . . ; 1ÞAn
.

3. Canonical projection of the lattice generated by the
exceptional group Wa(F4)

The Coxeter–Dynkin diagram of the exceptional group WðF4Þ

is shown in Fig. 1. The order of the group is jWðF4Þj ¼ 1152. It

has two long roots (first two from left) and two short roots

(last two). The Cartan matrix and its inverse are given as

follows:

CF4
¼

2 �1 0 0

�1 2 �2 0

0 �1 2 �1

0 0 �1 2

0
BB@

1
CCA; ðCF4

Þ
�1
¼

2 3 4 2

3 6 8 4

2 4 6 3

1 2 3 2

0
BB@

1
CCA:
ð12Þ

The dual-space basis vectors are defined by the relation

½!i; 2�j=ð�j; �jÞ
 ¼ �ij, where the scalar product in dual space is

defined by the metric tensor ð!i; !jÞ ¼ Gij which is given in the

matrix form as

G ¼

2 3 2 1

3 6 4 2

2 4 3 3=2

1 2 3=2 1

0
BB@

1
CCA: ð13Þ
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Figure 1
Coxeter–Dynkin diagram of WðF4Þ.



The F4 lattice is generated by its short roots and evidently the

lattice is self dual because the inverse matrix in equation (12)

has integer entries only. Therefore the root and the weight

lattices coincide up to an action of the Coxeter–Weyl group

WaðF4Þ. We will work with the dual-space basis vectors to

define a general lattice vector. In an earlier paper (Koca et al.,

2013) the F4 polytopes were studied in detail. The self-dual

regular polytope of F4 is called the 24-cell and it is either

represented by the orbit ð1; 0; 0; 0ÞF4
or ð0; 0; 0; 1ÞF4

. In Fig. 2,

we display the orthogonal projections of some of the WðF4Þ

polytopes.

The only difference between these two representations of

the 24-cell is that norms of the vectors are given by ð!1; !1Þ = 2

versus ð!4; !4Þ = 1 and one is rotated with respect to the

other within the lattice space. A quaternionic representation

of the polytope ð1; 0; 0; 0ÞF4
corresponds to the quaternionic

elements of the binary tetrahedral group T (Koca et al., 2006).

The F4 lattice is generated by the polytope ð0; 0; 0; 1ÞF4
and the

scaled copy of the 24-cell 1
2 ð0; 0; 0; 1ÞF4

(Moody & Patera,

1992) represents the Voronoi cell of the lattice. The four

orthonormal unit vectors can be constructed by a similar

technique studied in the previous section. The lattice space of

F4 can be decomposed into two orthogonal planes represented

by the pair of vectors ð�1; �4Þ and ð�2; �3Þ, which are given by

�1 ¼
ffiffiffi
2
p �

sinð�=24Þx̂x1 þ cosð�=24Þx̂x4

�
¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ

ffiffiffi
3
pp h

�1 þ
� ffiffiffi

3
p
þ 1

	
�3

i
;

�4 ¼
ffiffiffi
2
p �

sinð�=24Þx̂x1 � cosð�=24Þx̂x4

�
¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ

ffiffiffi
3
pp
"� ffiffiffi

3
p
þ 1
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The Coxeter element represents a rotation by 30� in the

plane ð�1; �4Þ and 150� in the plane ð�2; �3Þ. The orthogonal

components of a general lattice vector in the plane ðx̂x1; x̂x4Þ can

be written as

q1 ¼
1ffiffiffi

2
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and in the plane ðx̂x2; x̂x3Þ as

q2 ¼
1ffiffiffi
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When the Voronoi cell 1
2 ð0; 0; 0; 1ÞF4

is projected onto the

plane ðx̂x2; x̂x3Þ, it describes a disc of radius R0 ¼
1
2 ðq2

2 þ q3
2Þ

1
2.

One can select the lattice points which project into this region

with their components q2 and q3 satisfying the relation
1
2 ðq2

2 þ q3
2Þ

1=2
 R0. Now project those points onto the plane

ð�1; �4Þ. The result of this projection is shown in Fig. 3. One

can repeat the same procedure by interchanging the planes

that leads to the same result because the dihedral group acts in

both planes faithfully. The quasicrystal structure in Fig. 3 is

strikingly similar to that observed in the quasicrystals of the

Ni–Cr particles (Ishimasa et al., 1985).

4. Canonical projection of the lattice generated by the
group Wa(B6)

The Coxeter–Dynkin diagram of the group WðB6Þ is displayed

in Fig. 4. The order of the group is jWðB6Þj ¼ 266!. Its last root

is a short root of norm 1. The Cartan matrix and its inverse are

given as follows:
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Figure 2
Orthogonal projections of some of the WðF4Þ polytopes. (a) Voronoi cell
of F4 and (b) (0, 0, 1, 0)F4.

Figure 3
The canonical projection of the F4 lattice onto the plane ðx̂x1; x̂x4Þ.



CB6
¼

2 �1 0 0 0 0

�1 2 �1 0 0 0

0 �1 2 �1 0 0

0 0 �1 2 �1 0

0 0 0 �1 2 �2

0 0 0 0 �1 2

0
BBBBBBBB@

1
CCCCCCCCA
;

ðCB6
Þ
�1
¼

1 1 1 1 1 1

1 2 2 2 2 2

1 2 3 3 3 3

1 2 3 4 4 4

1 2 3 4 5 5
1
2 1 3

2 2 5
2 3

0
BBBBBBBB@

1
CCCCCCCCA
:

ð17Þ

The metric tensor in the dual space is given by the matrix

ð!i; !jÞ = Gij = ðC�1Þijð�j; �jÞ=2. The root lattice is a simple

cubic lattice in six dimensions generated by the short roots of

B6. The lattice can be represented in the weight space with the

lattice vectors given by q =
P5

i¼1 ai!i þ 2a6 � ða1; a2; . . . ; 2a6Þ,

ai 2 Z. For example, the Voronoi cell is the polytope (0, 0, 0,

0, 0, 1)B6
which represents a six-dimensional cube with 64

vertices. Its fundamental polytopes are represented by the

orbit (1, 0, 0, 0, 0, 0)B6
, (0, 1, 0, 0, 0, 0)B6

, (0, 0, 1, 0, 0, 0)B6
, (0, 0,

0, 1, 0, 0)B6
, (0, 0, 0, 0, 1, 0)B6

and (0, 0, 0, 0, 0, 1)B6
. For example,

the two polytopes (1, 0, 0, 0, 0, 0)B6
and (0, 0, 0, 0, 0, 1)B6

are the

dual to each other. Their properties are described in Table 2.

The vertices of the six-dimensional cube can also be written as

(0, 0, 0, 0, 0, 1)B6
= 1

2(�l1 � l2 � l3 � l4 � l5 � l6) in terms of

some suitable orthonormal set of vectors with ðli; ljÞ ¼ �ij

ði; j ¼ 1; 2; . . . ; 6Þ, where the simple roots are defined as �1 = l1
� l2, �2 = l2� l3, �3 = l3� l4, �4 = l4� l5, �5 = l5� l6, �6 = l6. The

numbers N0 � N1 + N2 � N3 + N4 � N5 = 0 satisfy the Euler

equation. The projections of some of those polytopes onto the

Coxeter plane are depicted in Fig. 5.

The unit vectors of the space of the B6 lattice

can be computed from the formula x̂xi =� ffiffiffi
h
p ffiffiffiffi

�i

p 	�1 P
j Xji
ð2�jÞ=ð�j; �jÞ, where the sixth components

of the eigenvectors are taken as 1. The orthonormal set of

basis vectors of the B6 can be determined as follows:

x̂x1 ¼
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The root vectors of the Coxeter graphs I2ðh=miÞ with mi = 1, 3,

5 can be defined as follows:

�1 ¼
ffiffiffi
2
p �

sinð�=24Þx̂x1 þ cosð�=24Þx̂x6

�
;

�6 ¼
ffiffiffi
2
p �

sinð�=24Þx̂x1 � cosð�=24Þx̂x6

�
;

�2 ¼
ffiffiffi
2
p �

sinð3�=24Þx̂x2 þ cosð3�=24Þx̂x5

�
;

�5 ¼
ffiffiffi
2
p �

sinð3�=24Þx̂x2 � cosð3�=24Þx̂x5

�
;

�3 ¼
ffiffiffi
2
p �

sinð5�=24Þx̂x3 þ cosð5�=24Þx̂x4

�
;

�4 ¼
ffiffiffi
2
p �

sinð5�=24Þx̂x3 � cosð5�=24Þx̂x4

�
:

ð19Þ
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Table 2
Numbers of facets of some of the B6 polytopes.

Polytope N0 N1 N2 N3 N4 N5

ð1; 0; 0; 0; 0; 0ÞB6
12 60 160 240 192 64

ð0; 1; 0; 0; 0; 0ÞB6
60 480 1120 1200 576 76

ð0; 0; 1; 0; 0; 0ÞB6
160 1440 2880 2160 636 76

ð0; 0; 0; 1; 0; 0ÞB6
240 1920 3200 2080 636 76

ð0; 0; 0; 0; 1; 0ÞB6
192 960 1600 1200 444 76

ð0; 0; 0; 0; 0; 1ÞB6
64 192 240 160 60 12

Figure 5
Orthogonal projections of some of the polytopes of WðB6Þ. (a) (1, 0, 0, 0,
0, 0)B6

is an octahedron in six dimensions and (b) (0, 0, 0, 0, 0, 1)B6
is a

cube in six dimensions.
Figure 4
Coxeter–Dynkin diagram of the Coxeter–Weyl group WðB6Þ.



These sets of vectors define three orthogonal planes deter-

mined by the pair of vectors ð�1; �6Þ; ð�2; �5Þ; ð�3; �4Þ in which

the Coxeter element acts like rotations with respective angles

�/6, �/2, 5�/6. Orthogonal projections of a general lattice

vector q ¼
P5

i¼1 ai!i þ 2a6 onto these planes are given by the

following pairs. The ðx̂x1; x̂x6Þ plane:
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The ðx̂x2; x̂x5Þ plane:
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The ðx̂x3; x̂x4Þ plane:
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Similar arguments to those discussed for the WaðF4Þ lattice

can be applied here. That is, the Voronoi cell Vð0Þ of the

WaðB6Þ lattice, the six-dimensional cube represented by the

polytope (0, 0, 0, 0, 0, 1)B6
, is projected into the space E?

determined by the four-dimensional subspace defining a

window K. Projections onto the respective planes ðx̂x1; x̂x6Þ and

ðx̂x3; x̂x4Þ lead to similar results. Fig. 6 depicts the projection of

the WaðB6Þ lattice onto the plane ðx̂x1; x̂x6Þ, which represents a

WaðB6Þ quasicrystal with 12-fold symmetry. It is interesting to

note that the tiles include rhombi in addition to the usual

square and triangle tiles. A recent experimental result (Förster

et al., 2013) confirms this kind of tiling.

Let us define the E? space by the union of the planes

ð�1; �6Þ and ð�3; �4Þ. We project the Voronoi cell into this

space to obtain a window. Then we project the lattice points

onto the plane ðx̂x2; x̂x5Þ. The orthogonal projection leads to a

square lattice whose symmetry is the dihedral group D4 of

order 8 and its Coxeter–Weyl group is the group D4 � WðB2Þ.

It is another subgroup of the group WðB6Þ but not maximal.

The projected set is a crystal structure with fourfold symmetry.

A projected section of the lattice is shown in Fig. 7.

5. Canonical projections of the root and weight lattices
of Wa(E6)

The Coxeter–Dynkin diagram of the exceptional group WðE6Þ

is given in Fig. 8. The corresponding Cartan matrix and its

inverse are given as follows:

CE6
¼

2 �1 0 0 0 0

�1 2 �1 0 0 0

0 �1 2 �1 0 �1

0 0 �1 2 �1 0

0 0 0 �1 2 0

0 0 �1 0 0 2

0
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1
CCCCCCCCA
;
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Þ
�1
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4=3 5=3 2 4=3 2=3 1

5=3 10=3 4 8=3 4=3 2

2 4 6 4 2 3

4=3 8=3 4 10=3 5=3 2

2=3 4=3 2 5=3 4=3 1

1 2 3 2 1 2

0
BBBBBBBB@

1
CCCCCCCCA
:

ð23Þ

The group generators can be defined by the actions on the

simple roots by using the following general formula:
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Figure 6
The canonical projection of the lattice WaðB6Þ onto the plane ðx̂x1; x̂x6Þ.

Figure 7
The canonical projection of the lattice WaðB6Þ onto the plane ðx̂x2; x̂x5Þ.



ri� ¼ ��
2ð�; �iÞ

ð�i; �iÞ
�i ði ¼ 1; 2; . . . ; 6Þ: ð24Þ

The order of the Coxeter–Weyl group generated by the six

6� 6 matrices is jWðE6Þj ¼ 27345 = 51 840. An arbitrary

vector of the root lattice E6 is defined by the vector. Similarly,

a weight vector belonging to the weight lattice E6
� is given by

the vector and the orbit generated by an arbitrary vector

is defined by WðE6Þq � qE6
� ða1; a2; . . . ; a6ÞE6

. If we denote

the root and weight lattice vectors by sextuples b �

ðb1; b2; . . . ; b6Þ and a � ða1; a2; :::; a6Þ, respectively, then we

have the relations bCE6
¼ a or aðCE6

Þ
�1
¼ b. These relations

imply that when b has integer components it belongs to the

root lattice. It also belongs to the weight lattice as a would

also take integer components. However, for a with integer

components, b may not have integer components. Therefore it

is clear that the weight lattice E6
� admits the root lattice E6 as

a sublattice. The orthogonal unit vectors for E6 obtained from

equation (5) are given explicitly as follows:
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Using equations (8) and these unit vectors, we define three

orthogonal planes with the simple roots (�1, �6), (�2, �5) and

(�3, �4) of the graph I2ðh=miÞ with m1 = 1, m2 = 4, m3 = 5,

respectively. The generators R1 and R2 act like reflection

generators on these root spaces and the corresponding

Coxeter element acts like rotations by angles �/6, 2�/3 and

5�/6, respectively, on these orthogonal planes. The dihedral

group acting in the planes (�1, �6) and (�3, �4) is a noncrys-

tallographic group, however, the dihedral group acting in

the plane (�2, �5) is a crystallographic group isomorphic to

the subgroup WðA2Þ of order 6. These properties should be

reflected in the projections. Components of an arbitrary

weight vector in the respective planes are given as follows. The

plane ðx̂x1; x̂x6Þ:

q1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
3
ppq �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ

ffiffiffi
3
pp 	



a1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
3
p

q
a2 þ ð1þ

ffiffiffi
3
p
Þa3

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
3
p

q
a4 þ a5 þ

ffiffiffi
2
p

a6

�
;

q6 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
3
ppq �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ

ffiffiffi
3
pp 	



� a1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
3
p

q
a2

�
�
1þ

ffiffiffi
3
p 	

a3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
3
p

q
a4 � a5 þ

ffiffiffi
2
p

a6

�
:

ð26Þ

The plane ðx̂x2; x̂x5Þ:

q2 ¼
1

2
½�a1 � a2 þ a4 þ a5
;

q5 ¼
1

2
ffiffiffi
3
p ½�a1 þ a2 � a4 þ a5
:

ð27Þ

The plane ðx̂x3; x̂x4Þ:

q3 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffi
3
ppq �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�

ffiffiffi
3
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2�
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q
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�
�
1�
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3
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2�
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3
p

q
a4 � a5 þ

ffiffiffi
2
p

a6

�
;

q4 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffi
3
ppq �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�

ffiffiffi
3
pp 	



a1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffi
3
p

q
a2

þ
�
1�

ffiffiffi
3
p 	

a3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffi
3
p

q
a4 þ a5 þ

ffiffiffi
2
p

a6

�
:

ð28Þ

Before we study the details of the canonical projection of

the E6 lattices, we would like to study the projections of

certain polytopes of the group WðE6Þ. The fundamental

polytopes are characterized by the orbits (1, 0, 0, 0, 0, 0)E6
,

(0, 1, 0, 0, 0, 0)E6
, (0, 0, 1, 0, 0, 0)E6

, (0, 0, 0, 1, 0, 0)E6
, (0, 0, 0, 0, 1,

0)E6
and (0, 0, 0, 0, 0, 1)E6

. Their vertices are the vectors of the

weight lattice. Two particular polytopes belong to both

lattices: the root polytope (0, 0, 0, 0, 0, 1)E6
and the polytope

(0, 0, 1, 0, 0, 0)E6
. These two polytopes have a larger symmetry

Aut(E6) � W(E6):�, where � represents the Dynkin diagram

symmetry of order 2 and (:) means semi-direct product. The

characteristic properties of these polytopes, such as numbers

of vertices, edges, two facets, three facets, four facets and five

facets (denoted respectively by N0;N1;N2;N3;N4;N5) are

listed in Table 3. Their projections onto the plane ð�1; �6Þ are

illustrated in Fig. 9. The dual of the root polytope (0, 0, 0, 0, 0,
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Figure 8
Coxeter–Dynkin diagram of E6.



1)E6
is the union of the polytopes (1, 0, 0, 0, 0, 0)E6

[ (0, 0, 0, 0,

1, 0)E6
and it constitutes the Voronoi cell of the root lattice

with N0 = 54, N1 = 702, N2 = 2160, N3 = 2160, N4 = 720, N5 = 72.

The root polytope as well as its dual has a larger symmetry

Aut(E6) � W(E6):�. Their projections are shown in Fig. 9.

These numbers satisfy the Euler’s equation N0 �N1 + N2 �N3

+ N4 � N5 = 0.

Now we can choose any one of these planes as E|| and the

rest of the four-dimensional space as E?. Let us choose the

plane ð�1; �6Þ as E|| and the rest as E?. As we have explained in

x2, the canonical projection is carried out by projecting the

Voronoi cell Vð0Þ of the root/weight lattice into the space E?
to obtain a window K. The Voronoi cell of the weight lattice

E6
� (Conway & Sloane, 1988; Worley, 1987; Pervin, 1993) is a

polytope which can be specified as 1
3 ð0; 0; 1; 0; 0; 0ÞE6

. It has

N0 ¼ 720 vertices;N1 ¼ 6480 edges; N2 ¼ 10800 triangular faces;

N3 ¼ 6480 three facets ð2160 tetrahedra þ 4320 octahedraÞ;

N4 ¼ 1566 four facets;N5 ¼ 126 five facets: ð29Þ

The 720 vertices of the polytope are determined by the action

of the group elements on the vector 1
3 ð0; 0; 1; 0; 0; 0Þ and using

the formula

R0 ¼
1

3
ðq2

2
þ q3

2
þ q4

2
þ q5

2
Þ

1
2; ð30Þ

one obtains the window K in the form of a three-sphere. Now

we project the lattice vectors into this window using equations

(26)–(28). Th next step is to project the lattice vectors which

fall in the window K onto the plane (�1, �6) by using the

components of the vectors given in equation (26). We illus-

trate the projection of the root lattice in Fig. 10. They are

the same point distributions in which Fig. 10(b) represents

the tiling with minimal distance and Fig. 10(c) represents a

partial tiling which is exactly the same tiling obtained from

the projection of the F4 lattice that is a sublattice in the root

lattice E6.

The projection of the weight lattice is depicted in Fig. 11.

We note the fact that similar distributions are obtained if

the window K is chosen to be the three-sphere

R0 ¼
1
3 ðq1

2 þ q2
2 þ q5

2 þ q6
2Þ

1
2 and the projection of the

lattice is made onto the plane ð�3; �4Þ.

Now let us define the E|| plane by the pair of vectors ð�2; �5Þ.

The representation of the Coxeter group in the plane ð�2; �5Þ

is such that ðR1R2Þ
3
¼ 1. Therefore, the dihedral group is

represented by the group D3 � S3 � WðA2Þ which is not

maximal. Consequently, the four-dimensional Euclidean

subspace E? is determined by the orthogonal planes ð�1; �6Þ

and ð�3; �4Þ. This time we consider only the weight lattice

projection in which the window K is determined by the

projection of the Voronoi cell 1
3 ð0; 0; 1; 0; 0; 0ÞE6

into the space

E?. After repeating the previous procedure we project the

lattice points into the plane determined by the vectors (�2, �5)

and obtain the planar lattice as shown in Fig. 12. It is a

honeycomb lattice as expected because the projection has

been made onto a plane where the crystallographic subgroup

WðA2Þ � WðE6Þ acts. It is interesting to observe that the

honeycomb lattice exits in nature as the graphene sheet.

6. Conclusion

This paper has introduced a general technique applicable to

the projections of all higher-dimensional lattices generated

by the affine Coxeter–Weyl groups. It was shown that the

eigenvalues, the corresponding eigenvectors and the simple

roots of the Cartan matrix (Gram matrix) play an important

role in the projection technique. The maximal dihedral

subgroup of the Coxeter–Weyl group can be generated by two

generators whose product defines the Coxeter element of the
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Table 3
Numbers of facets of some of the E6 polytopes.

Polytope N0 N1 N2 N3 N4 N5

ð1; 0; 0; 0; 0; 0ÞE6
27 216 720 1080 648 99

ð0; 1; 0; 0; 0; 0ÞE6
216 2160 5040 4320 1350 126

ð0; 0; 1; 0; 0; 0ÞE6
720 6480 10800 6480 1566 126

ð0; 0; 0; 1; 0; 0ÞE6
216 2160 5040 4320 1350 126

ð0; 0; 0; 0; 1; 0ÞE6
27 216 720 1080 648 99

ð0; 0; 0; 0; 0; 1ÞE6
72 720 2160 2160 702 54

Figure 9
Projections of some of E6 polytopes onto the Coxeter plane. (a) (1, 0, 0, 0,
0, 0)E6

, (b) (1, 0, 0, 0, 0, 0)E6
, (c) (0, 0, 0, 0, 0, 1)E6

, (d) (0, 0, 0, 0, 0, 1)E6
root

polytope and (e) Voronoi cell of the root lattice (1, 0, 0, 0, 0, 0)E6
[ (0, 0, 0,

0, 1, 0)E6
.



Coxeter–Weyl group. It was noted that the Coxeter group acts,

in the lattice space spanned by the orthogonal unit vectors, as

a reducible representation of the dihedral group in the block

diagonal form of 2� 2 irreducible representations and/or as

1� 1 matrix depending on the rank of the Coxeter–Weyl

group. If the dihedral subgroup acting on the principal plane

(Coxeter plane) is noncrystallographic, the point distribution

represents a quasicrystal with h-fold symmetry where h is the

Coxeter number; otherwise it represents a crystallographic

point distribution such as square and/or hexagonal lattices. We

have studied examples of 12-fold symmetry by projection of

the lattices WaðF4Þ, WaðB6Þ and WaðE6Þ. It turned out that the

structures obtained by the projections of the lattices WaðF4Þ

and WaðB6Þ are compatible with the 12-fold symmetric

quasicrystal structure observed in Ni–Cr particles (Ishimasa et

al., 1985) and in dodecagonal quasicrystal formation BaTiO3

(Förster et al., 2013), respectively. The projection technique we

introduced can be applied to any lattice described by the affine

Coxeter group.
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